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Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.
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The source vertex’s
state is 0, and the
Source others are Iinfinity.
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An example iterative computation for SSSP.
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Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.
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Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.
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Fifth iteration
Update the states of
V4, Vgand v,
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An example iterative computation for SSSP.
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Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

Sixth iteration
Update the state of v,

Source

)

An example iterative computation for SSSP.
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Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

3
lteration ends
The states of all
vertices converge.
Source
2

An example iterative computation for SSSP.
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[l Evolving Graph
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[l Evolving Graph
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[l Evolving Graph
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[l Evolving Graph
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. Incremental graph processing systems

» Tornado [SIGMOD’16]

> KickStarter [ASPLOS’17]
» GraphBolt [EuroSys’19]
» Ingress [VLDB'21]

» DZIG [EuroSys’21]

» RisGraph [SIGMOD’21]
» GraphFly [SC’22]

> ...
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lll Example: Incremental SSSP

(a) A simple graph G
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(a) A simple graph G
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lll Example: Incremental SSSP

(b) Updated graph G’

Graph updates

Del edge (V2. Va, 1)
Add edge (Y1, V3, 1)
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lll Example: Incremental SSSP

(b) Updated graph G’

Old results should be updated
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lll Example: Incremental SSSP
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(b) Updated graph G’

Old results should be updated

i Reuse old results

i Add
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lll Example: Incremental SSSP

(b) Updated graph G’
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lll Example: Incremental SSSP

(b) Updated graph G’

Recompute to reach convergence on the new graph
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lll Example: Incremental SSSP

(b) Updated graph G’

The red edges mean they have been activated at least once.
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lll Example: Incremental SSSP

Reduced redundant
computations

(b) Updated graph G’

The red edges mean they have been activated at least once.
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Jll Drawback

» Update messages go through dense regions requires multiple iterations.

Require multiple iterations

Input message

Output message
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[l Solution

» Update messages go through dense regions requires multiple iterations.

Require multiple iterations Require One iteration

Input message Input message

& (V) &

4 3lshortcut

3 iterations 23 - 1 iteration
@

Output message Output message

28



il Drawback

» Update messages are propagated widely during iterations.

(a) Results of running SSSP on G’
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il Drawback

» Update messages are propagated widely during iterations.

(a) Results of running SSSP on G’

Most vertices Can iteration be limited to a small range?
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[l Solution

» Update messages are propagated widely during iterations.

lteration lteration

Most vertices Only key vertices
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[l Solution

» Update messages are propagated widely during iterations.

lteration lteration Non-iteration
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(a) A simple graph G
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Perform costly
iterative computations

Upper layer
(skeleton)

(a) A simple graph G

Lower layer

(b) Layered G
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. Layered graph construction
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. Layered graph construction

Existing subgraph discovery or
community discovery algorithms
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. Layered graph construction

Existing subgraph discovery or
community discovery algorithms
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. Layered graph construction

Existing subgraph discovery or
community discovery algorithms
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. Incremental processing with layered graph

» Layered graph update

» Revision messages deduction

» Messages Upload

» lterative Computation On The Upper Layer
» Revision Messages Assignment
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[l Layered graph update

(a) Updated graph G’

(b) Layered G’

Incrementally and independently update affected regions based on graph changes.
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Jll Revision messages deduction

I—Iow

The previous results are reused when the graph is updated.
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Jll Revision messages deduction

(a) Updated graph G’

(b) Layered G’ for SSSP

Deduce revision messages using methods from existing incremental systems such as
KickStarter [ASPLOS’17], Ingress [VLDB’21], RisGraph [SIGMOD’21], etc.
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[l Messages Upload

Update messages are uploaded from the lower layer to the upper layer.
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. lterative Computation On The Upper Layer

Apply all update messages to all key vertices on the upper layer.
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. lterative Computation On The Upper Layer

This iteration is efficient
because the skeleton is small.

Apply all update messages to all key vertices on the upper layer.
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. lterative Computation On The Upper Layer

Avoid updating
frequently

L/ow

Apply all update messages to all key vertices on the upper layer.
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. Revision Messages Assignment

Assign update messages to the vertices on the lower layer.
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Jll Advantages of Layph

‘J—, Upper layer
i3 2 (skeleton)
L, @@

Lower layer

I—Iow

(a) A simple graph G (b) Layered G for SSSP

» The iterative computation is transferred from the original graph
to a small skeleton.

» Limit the propagation range of update messages in iterations
effectively.
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lll Experimental Setting

Competitors

KickStarter[ASPLOS’17], GraphBolt[EuroSys’19], DZiG[EuroSys’21],

Ingress[VLDB’21], RisGraph[SIGMOD’21]

Workloads

SSSP, BFS, PageRank, PHP

Environment

AliCloud lecs.r6.13xlarge (52vCPU, 384G Memory)

Datasets
Graph Vertices Edges Size
UK-2005 (UK) [24] 39,459,925 936,364,282 16GB
IT-2004 (IT) [25] 41,291,594 | 1,150,725,436 | 19GB
SK-2005 (SK) [26] 50,636,154 | 1,949,412,601 | 33GB
Sinaweibo (WB) [27] | 58,655,850 261,323,450 3.8GB
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Jll Overall Perfor
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Layph outperforms state-of-the-art incremental graph systems by 9.08x on average.
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Fig. 1. Response time comparison
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Fig. 2: Number of edge activations comparison
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[l VVarying Amount of Updates
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Fig.3: Speedup over competitors when varying batch size

Layph has a significant speedup when the updates are small.



lll Analysis of Additional Overhead
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Fig.4: Additional space cost and offline preprocessing time

The offline operation is performed only once but can bring a
significant performance gain on each incremental computation.



lll Conclusion

» Design a layered incremental graph processing framework.
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lll Conclusion

» Design a layered incremental graph processing framework.
» Constrain message propagation in incremental graph processing

via layering graph.
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lll Conclusion

» Design a layered incremental graph processing framework.

» Constrain message propagation in incremental graph processing
via layering graph.

» Implement a high-performance runtime engine for incremental

graph processing.
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Thank you for listening
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