Layph: Making Change Propagation Constraint in Incremental

Graph Processing by Layering Graph

Song Yul, Shufeng Gong!® , Yanfeng Zhang?!, Wenyuan Yu? , Qiang Yin3, Chao Tian* Qian Tao?,
Yongze Yan?, Ge Yul, Jingren Zhou?
Northeastern University! Alibaba Group? Shanghai Jiao Tong University® Chinese Academy of Sciences*

Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University®

LNy o

@ c.html

d.html

Web network

Social network

F’mn@

X n

I’Tlm i ﬁﬂﬂ@

Clty c city f

Road network

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

Source

N

An example iterative computation for SSSP.

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

3
Initialization
The source vertex’s
state is 0, and the
Source others are Iinfinity.
2

[0 o)

An example iterative computation for SSSP.

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

First iteration

Update the states of
v, and v,.

Source

[N

An example iterative computation for SSSP.

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and

PageRank, have been widely applied in many fields.

Source

[N

An example iterative computation for SSSP.

Second iteration

Update the states of
Vi, Vg, and v,.

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

Third iteration
Update the state of v-.

Source

[N

An example iterative computation for SSSP.

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

Fourth iteration

Update the states of
Vg and vg.

Source

[N

An example iterative computation for SSSP.

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

3
Fifth iteration
Update the states of
V4, Vgand v,
Source
2

An example iterative computation for SSSP.

10

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

Sixth iteration
Update the state of v,

Source

)

An example iterative computation for SSSP.

11

Jll Iterative Computation

Iterative graph algorithms, e.g., single source shortest path(SSSP) and
PageRank, have been widely applied in many fields.

3
lteration ends
The states of all
vertices converge.
Source
2

An example iterative computation for SSSP.

12

[l Evolving Graph

@a.html_ rﬂpﬂm "mm
@ city a
_/ jb'“”“' rml'nmﬂ il
@ \ N cityb T /'/ city e
ehtml N\ . @ m city d i
@ c.html : *
' city ¢ city f
d.html
Social network Road network

Web network

The graphs are constantly evolving in real time!

13

[l Evolving Graph

Web pages

add/delete

/ \
city a

city b T~ ﬁmﬂﬁ—m ~fcity e

/ Ci

city c city f

Social network Road network

f.html

@7

o
-y
—
3

e.html

LV/
®

d.html

Web network

The graphs are constantly evolving in real time!

14

[l Evolving Graph

Fans Iﬂﬂ
follow/unfollow rm"ﬁ”m

m

_ / e\
unfollow C'tyb \ /C|tye

/c.
tyd

Social network Road network

- @

f.html

0
~
N
0

d.html

—

Web network

The graphs are constantly evolving in real time!

15

[l Evolving Graph

- @

f.nhtm

—

8
-

I

0

d.html

Web network

Roads
a.html obstruct/open
b.html :
city e
| unfollow city b \ / y
@\ / Cltyd

c.html
Clty C Clty f
Social network Road network

The graphs are constantly evolving in real time!

16

. Incremental graph processing systems

» Tornado [SIGMOD’16]

> KickStarter [ASPLOS’17]
» GraphBolt [EuroSys’19]
» Ingress [VLDB'21]

» DZIG [EuroSys’21]

» RisGraph [SIGMOD’21]
» GraphFly [SC’22]

> ...

17

lll Example: Incremental SSSP

(a) A simple graph G

18

lll Example: Incremental SSSP

(a) A simple graph G

19

lll Example: Incremental SSSP

(b) Updated graph G’

Graph updates

Del edge (V2. Va, 1)
Add edge (Y1, V3, 1)

20

lll Example: Incremental SSSP

(b) Updated graph G’

Old results should be updated

21

lll Example: Incremental SSSP

' d
-
-
-
—”’
-
-

(b) Updated graph G’

Old results should be updated

i Reuse old results

i Add
iedge

22

lll Example: Incremental SSSP

(b) Updated graph G’

23

lll Example: Incremental SSSP

(b) Updated graph G’

Recompute to reach convergence on the new graph

24

lll Example: Incremental SSSP

(b) Updated graph G’

The red edges mean they have been activated at least once.

25

lll Example: Incremental SSSP

Reduced redundant
computations

(b) Updated graph G’

The red edges mean they have been activated at least once.

26

Jll Drawback

» Update messages go through dense regions requires multiple iterations.

Require multiple iterations

Input message

Output message

27

[l Solution

» Update messages go through dense regions requires multiple iterations.

Require multiple iterations Require One iteration

Input message Input message

& (V) &

4 3lshortcut

3 iterations 23 - 1 iteration
@

Output message Output message

28

il Drawback

» Update messages are propagated widely during iterations.

(a) Results of running SSSP on G’

29

il Drawback

» Update messages are propagated widely during iterations.

(a) Results of running SSSP on G’

Most vertices Can iteration be limited to a small range?

30

[l Solution

» Update messages are propagated widely during iterations.

lteration lteration

Most vertices Only key vertices

31

[l Solution

» Update messages are propagated widely during iterations.

lteration lteration

Most vertices Only key vertices

32

[l Solution

» Update messages are propagated widely during iterations.

lteration lteration Non-iteration

9 “ e ®
7 X 3 ;',, 4 /',?3
\ V2) 1 ?’, @ £ & ,
1
— &

Most vertices Only key vertices Internal vertices

33

(a) A simple graph G

3 l
/3 2!
2

Upper layer
(skeleton)

2
D)
.

. A)
FRR Y|
0 .

.
.
L)

(b) Layered G

Lower layer

34

Perform costly
iterative computations

Upper layer
(skeleton)

(a) A simple graph G

Lower layer

(b) Layered G

35

. Layered graph construction

36

. Layered graph construction

Existing subgraph discovery or
community discovery algorithms

37

. Layered graph construction

Existing subgraph discovery or
community discovery algorithms

/

)

4/;
/

38

. Layered graph construction

Existing subgraph discovery or
community discovery algorithms

39

. Incremental processing with layered graph

» Layered graph update

» Revision messages deduction

» Messages Upload

» lterative Computation On The Upper Layer
» Revision Messages Assignment

40

[l Layered graph update

(a) Updated graph G’

(b) Layered G’

Incrementally and independently update affected regions based on graph changes.

41

Jll Revision messages deduction

I—Iow

The previous results are reused when the graph is updated.

42

Jll Revision messages deduction

(a) Updated graph G’

(b) Layered G’ for SSSP

Deduce revision messages using methods from existing incremental systems such as
KickStarter [ASPLOS’17], Ingress [VLDB’21], RisGraph [SIGMOD’21], etc.

43

[l Messages Upload

Update messages are uploaded from the lower layer to the upper layer.

44

. lterative Computation On The Upper Layer

Apply all update messages to all key vertices on the upper layer.

45

. lterative Computation On The Upper Layer

This iteration is efficient
because the skeleton is small.

Apply all update messages to all key vertices on the upper layer.

46

. lterative Computation On The Upper Layer

Avoid updating
frequently

L/ow

Apply all update messages to all key vertices on the upper layer.

47

. Revision Messages Assignment

Assign update messages to the vertices on the lower layer.

48

Jll Advantages of Layph

‘J—, Upper layer
i3 2 (skeleton)
L, @@

Lower layer

I—Iow

(a) A simple graph G (b) Layered G for SSSP

» The iterative computation is transferred from the original graph
to a small skeleton.

» Limit the propagation range of update messages in iterations
effectively.

49

lll Experimental Setting

Competitors

KickStarter[ASPLOS’17], GraphBolt[EuroSys’19], DZiG[EuroSys’21],

Ingress[VLDB’21], RisGraph[SIGMOD’21]

Workloads

SSSP, BFS, PageRank, PHP

Environment

AliCloud lecs.r6.13xlarge (52vCPU, 384G Memory)

Datasets
Graph Vertices Edges Size
UK-2005 (UK) [24] 39,459,925 936,364,282 16GB
IT-2004 (IT) [25] 41,291,594 | 1,150,725,436 | 19GB
SK-2005 (SK) [26] 50,636,154 | 1,949,412,601 | 33GB
Sinaweibo (WB) [27] | 58,655,850 261,323,450 3.8GB

50

Jll Overall Perfor

16 KickStarter =z
I m RisGraph 1 1
o 141 Ingress |
£ 12| Layph mes |
[-
- 10| ||
(&)
N 3
= I
E 6|
S 4| b 1 .
of | Y @ |
0 i B:RN N:SR NEEN B
UK IT SK WB
(a) SSSP
10
KickStarter m===
8 RisGraph —=
52 Ingress
£2 Layph mmm
586 |
Z3
B<
&JCD 4 N
w2 -
Eul .
S5 2 | %
0 | AN | % 10
UK IT SK WB

Layph outperforms state-of-the-art incremental graph systems by 9.08x on average.

(a) SSSP

Normalized Time

Normalized Number

mMance

40
_ GraphBolt ===
351 DZIG mm
o 30| 7 Ingress
£ Layph memm
i= 25| _
8 20| 7
g 15|
2 10}
5|
UK T SK WB

(c) PageRank

Fig. 1. Response time comparison

12 KickStarter]
RisGraph 3
10 Ingress]
Layph s
8]
B
‘ 1B
a0 L .
ol BN L B é |
oL bl milmilmlim
UK IT SK WB
(b) BES
30 KickStarter ===
] RisGraph —=
w5 Ingress
S Layph s
20
g
%15
10|
5
5
0 %»-W- moom
UK IT SK WB
(b) BES

Normalized Number

of Edge Activations
- NN W A~ OO~
o O O O O o O O

DZiG =
Ingress

- N 7) .

A GraphBolt =1 |

Layph mmm |

UK IT SK WB
(c) PageRank

Fig. 2: Number of edge activations comparison

40
GraphBolt &7
35 DZIG = |
o 30 Ingress
£ - Layph mesm |
= 25 7 zB]
8 20
g 15
S 10
5 _]
UK IT SK WB
(d) PHP
30
- GraphBolt ===
25 DZiG 1 |
52 Ingress
2220 Layph mm
=]
> >
23
8‘115
N o
gu%fw]
2% 5 m ,
0 Vo m P mllltm |
UK IT SK WB
(d) PHP

S1

[l VVarying Amount of Updates

I | KickStarter —+ | | " GraphBolt -
20 RisGraph 40 DZIG —
Ingress P Ingress
g— T _4__\ % SO*F} \
2 T 3 M
210 g 20, T
n S)
5 \:'* 10 “?,
0 ‘ ‘ : ‘ 0 : : ‘ :
10 100 1K 10K 100K 1M 10 100 1K 10K 100K 1M
Batch size Batch size
(a) SSSP (b) PageRank

Fig.3: Speedup over competitors when varying batch size

Layph has a significant speedup when the updates are small.

lll Analysis of Additional Overhead

1_2 T . LT T 45 T T T - T T T T
Edges in original graph Layph offline A
Shortcuts in layered graph 40 | Layph acc. inc. 72 q
w 1t 7 7 77 1 q
8 7 / 7 ’ 35+ Ingress acc. inc. == |
gosr | - G %0 Nl
S) e] U o 25|
5 06 1 7 1 €. | annniall ;
o / 7 / c 20
N 4 7 7 =
©04) areen | 7 / C 15+
£ Z : / 10
O ; i // L
oL] RENE
=2 0 L] / 7 5 L . .
0 f]] | 0.32% 0 il 1 L :
UK IT SK WB 13 5 7 9 11 13 15
Dateset # of incremental computation runs
(a) Space cost (b) Offline preprocessing time

Fig.4: Additional space cost and offline preprocessing time

The offline operation is performed only once but can bring a
significant performance gain on each incremental computation.

lll Conclusion

» Design a layered incremental graph processing framework.

54

lll Conclusion

» Design a layered incremental graph processing framework.
» Constrain message propagation in incremental graph processing

via layering graph.

55

lll Conclusion

» Design a layered incremental graph processing framework.

» Constrain message propagation in incremental graph processing
via layering graph.

» Implement a high-performance runtime engine for incremental

graph processing.

56

Thank you for listening

57

